

Zero-Drift, Low Power, CMOS Operational Amplifiers

1 FEATURES

- Input Offset Voltage: ±7µV (TYP) •
- Input Offset Drift: ±0.08µV/°C
- Low Quiescent Current: 40µA/Amp
- Gain Bandwidth:350kHz
- **Rail to Rail Input and Output**
- Low Noise: 0.9µV_{P-P} (0.1Hz to 10Hz)
- Slew Rate: 0.16V/µs •
- Supply Range: 2V to 5.5V
- Extended Temperature: -40°C to +125°C
- Micro SIZE PACKAGES: SOT23-5, SOP8

2 APPLICATIONS

- **Battery Powered Instruments**
- **Medical Instruments**
- Handheld Test Equipment
- **Temperature Measurements**
- Transducers
- **Electronic Scales**

3 DESCRIPTIONS

The RS8541, RS8542 series of CMOS operational amplifiers use auto-calibration techniques to simultaneously provide very low offset voltage (7μ V TYP) and near-zero drift over time and temperature. This family of amplifiers has ultralow noise, offset and power.

This miniature, high-precision operational amplifiers offset high input impedance and rail-to-rail input and rail-to-rail output swing. With gain-bandwidth product of 350KHz and slew rate of 0.16V/µs. Single or dual supplies as low as +2V (±1V) and up to +5.5V $(\pm 2.75V)$ may be used.

The RS854X are specified for the extended industrial and automotive temperature range (-40°C to 125°C). The RS8541 single amplifier is available in 5-lead SOT23 package, The RS8542 dual amplifier is available in 8-lead SOP package.

Device Information ⁽¹⁾							
PART NUMBER PACKAGE BODY SIZE(NOM)							
RS8541	SOT23-5	2.92mm×1.60mm					
RS8542	SOP8	4.90mm×3.90mm					

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 FEATURES	1
2 APPLICATIONS	1
3 DESCRIPTIONS	1
4 REVISION HISTORY	3
5 PACKAGE/ORDERING INFORMATION ⁽¹⁾	4
6 PIN CONFIGURATION AND FUNCTIONS	5
7 SPECIFICATIONS	7
7.1 Absolute Maximum Ratings	7
7.2 ESD Ratings	7
7.3 Recommended Operating Conditions	7
7.4 Electrical Characteristics	8
7.5 Typical Characteristics	9
8 DETAILED DESCRIPTION	11
8.1 Overview	11
8.2 Feature Description	11
8.3 Operating Voltage	11
8.4 Device Functional Modes	11
9 APPLICATION AND IMPLEMENTATION	12
9.1 Application Note	12
9.2 Typical Applications	12
9.2.1 Bidirectional Current-Sensing	12
9.2.2 Design Requirements	12
9.2.3 Detailed Design Procedure	12
9.2.4 Application Curve	13
10 LAYOUT	14
10.1 Layout Guidelines	14
10.2 Layout Example	14
11 PACKAGE OUTLINE DIMENSIONS	15
12 TAPE AND REEL INFORMATION	17

4 REVISION HISTORY

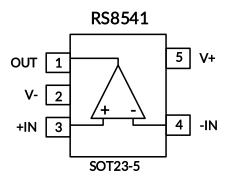
Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item		
A.0	2023/06/13	Preliminary version completed		
A.1	2023/08/24	Initial version completed		
A.1.1	2024/03/01	Modify packaging naming		
A.2	2024/12/24	1. Delete RS8541BXC5/RS8542XM Orderable Device 2. Add MSL on Page 4 in RevA.1.1		

5 PACKAGE/ORDERING INFORMATION⁽¹⁾

Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL ⁽³⁾	Package Qty
RS8541XF	SOT23-5	5	1	-40°C ~125°C	8541	MSL3	Tape and Reel,3000
RS8542XK	SOP8	8	2	-40°C ~125°C	RS8542	MSL3	Tape and Reel,4000

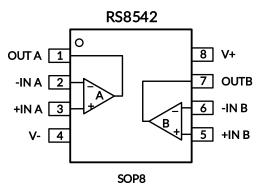
NOTE:


(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F. Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.

6 PIN CONFIGURATION AND FUNCTIONS


Pin Description

	PIN			
NAME	RS8541	I/O ⁽¹⁾	DESCRIPTION	
	SOT23-5			
-IN	4	I	Negative (inverting) input	
+IN	3	I	Positive (noninverting) input	
OUT	1	0	Output	
V-	2	-	Negative (lowest) power supply	
V+	5	-	Positive (highest) power supply	

(1) I = Input, O = Output.

PIN CONFIGURATION AND FUNCTIONS

Pin Description

	PIN			
NAME	RS8542	I/O ⁽¹⁾	DESCRIPTION	
	SOP8			
-INA	2	I	Inverting input, channel A	
+INA	3	I	Noninverting input, channel A	
-INB	6	I	Inverting input, channel B	
+INB	5	I	Noninverting input, channel B	
OUTA	1	0	Output, channel A	
OUTB	7	0	Output, channel B	
V-	4	-	Negative (lowest) power supply	
V+	8	-	Positive (highest) power supply	

(1) I = Input, O = Output.

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT	
	Supply, V _S =(V+) - (V-)	Supply, Vs=(V+) - (V-)		7		
Voltage	Signal input pin ⁽²⁾		(V-)-0.3	(V+) +0.3	V	
	Signal output pin ⁽³⁾		(V-)-0.3	(V+) +0.3		
	Signal input pin ⁽²⁾		-10	10	mA	
Current	Current Signal output pin ⁽³⁾ Output short-circuits ⁽⁴⁾		-10	10	mA	
			Cont	inuous		
0	Deckerse thermal impedance ⁽⁵⁾	SOT23-5		230	°C/W	
ALθ	Package thermal impedance ⁽⁵⁾	SOP8		110	°C/ vv	
	Operating range, T _A		-40	125		
Temperature	Junction, T ^{J (6)}		-40	150	°C	
	Storage, T _{stg}		-65	150		

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less.

(3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails should be current-limited to ±10mA or less.

(4) Short-circuit to ground, one amplifier per package.

(5) The package thermal impedance is calculated in accordance with JESD-51.

(6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} - T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-Body Model (HBM), MIL-STD-883K METHOD 3015.9	±4000	
V _(ESD)	Electrostatic discharge	Charged-Device Model (CDM), ANSI/ESDA/JEDEC JS-002-2018	±1000	V
		Machine Model (MM), JESD22-A115C (2010)	±300	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
	Single-supply	2		5.5	V
Supply voltage, V _S = (V+) - (V-)	Dual-supply	±1		±2.75	v
Specified temperature		-40		125	°C

7.4 Electrical Characteristics

Boldface limits apply over the specified temperature range, Full $^{(9)}$ = -40°C to +125°C.

(At T_A = +25°C, V_S=5V, R_L = 10kΩ connected to V_S/2, and V_{OUT} = V_S/2, V_{CM} = V_S/2, unless otherwise noted.)⁽¹⁾

DADAMETED		CONDITIONS		RS854X				
	PARAMETER	CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT		
POWER	SUPPLY				•	•		
Vs	Operating Voltage Range		2		5.5	V		
lq	Quiescent Current Per Amplifier			40	60	μA		
PSRR	Power-Supply Rejection Ratio	Vs=2 V to 5.5V	95	110		dB		
INPUT								
V _{OS} Input Offset Voltage		Vs= 2V, V _{CM} =Vs/2	-30	±3	30	μV		
		Vs= 5V, V _{CM} =Vs/2	-30	±7	30	μV		
Vos Tc	Input Offset Voltage Average Drift			±0.08		μV/°C		
IB	Input Bias Current ^{(4) (5)}	$V_{CM} = V_S/2$		±330		pА		
los ⁽⁵⁾	Input Offset Current	$V_{CM} = V_S/2$		±100		pА		
Vсм	Common-Mode Voltage Range		(V-)-0.1		(V+)+0.1	V		
CMRR	Common-Mode Rejection Ratio	(V-)-0.1V <v<sub>CM<(V+)+0.1V</v<sub>	105	120		dB		
INPUT C	APACITANCE							
	Differential ⁽⁵⁾			2.5		pF		
	Common-Mode ⁽⁵⁾			5		pF		
OUTPUT	r							
Aol	Open-Loop Voltage Gain	R _L =10KΩ, V _O = 0.3V to 4.7V	105	130		dB		
Vol	Output Voltage Low from rail	RL=100 KΩ to GND		1		mV		
VOL		R_L =10 K Ω to GND		10	20	111 V		
Vон	Output Voltage High from rail	R_L =100 K Ω to V+		1		mV		
VOH		R_L =10 K Ω to V+		10	20	111 V		
lsc	Output Short-Circuit Current ^{(6) (7)}		±20	±30		mA		
FREQUE	NCY RESPONSE	-	-		•			
SR	Slew Rate ⁽⁸⁾	G=+1		0.16		V/µs		
GBW	Gain-Bandwidth Product			350		KHz		
tor	Overload Recovery Time	V _{IN} ∙Gain≥Vs		3		μs		
NOISE P	ERFORMANCE	-						
e _n p-p	Input Voltage Noise	f= 0.1Hz to 10Hz		0.9		μVpp		
e _n p-p	Input Voltage Noise (5)	f= 0.01Hz to 1Hz		0.25		μVpp		
en	Input Voltage Noise Density ⁽⁵⁾	f = 1KHz		45		nV/√Hz		

NOTE:

(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

(4) Positive current corresponds to current flowing into the device.

(5) This parameter is ensured by design and/or characterization and is not tested in production.

(6) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{0JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is PD = ($T_{J(MAX)} - T_A$) / R_{0JA} . All numbers apply for packages soldered directly onto a PCB.

(7) Short circuit test is a momentary test.

(8) Number specified is the slower of positive and negative slew rates.

(9) Specified by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At $T_A = +25^{\circ}$ C, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

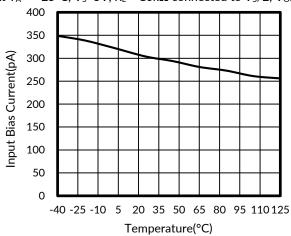


Figure 1. Input Bias Current vs Temperature

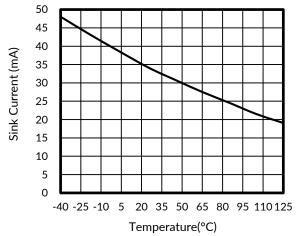


Figure 3. Sink Current vs Temperature

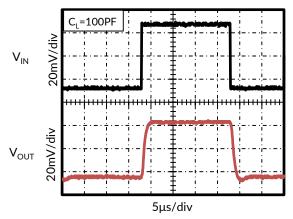


Figure 5. Small-Signal Step Response

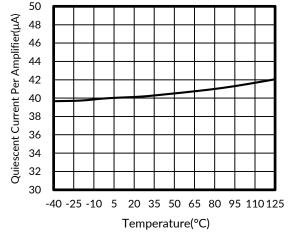


Figure 2. Quiescent Current vs Temperature

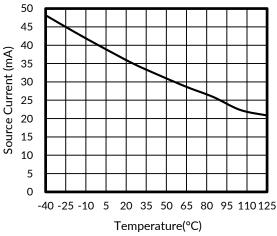
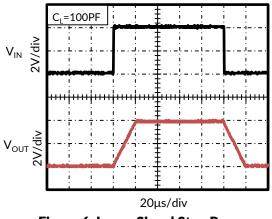
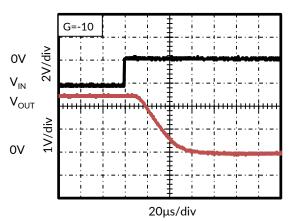


Figure 4. Source Current vs Temperature




Figure 6. Large-Signal Step Response

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At $T_A = +25^{\circ}$ C, $V_S=5V$, $R_L = 10k\Omega$ connected to $V_S/2$, $V_{OUT} = V_S/2$, unless otherwise noted.

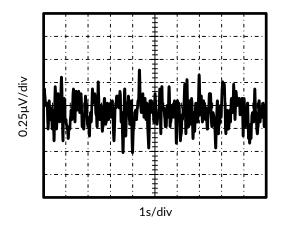


Figure 9. 0.1Hz to 10Hz Noise

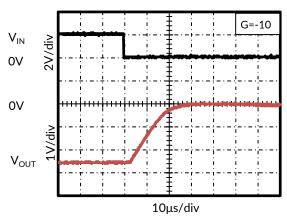


Figure 8. Negative Overvoltage Recovery

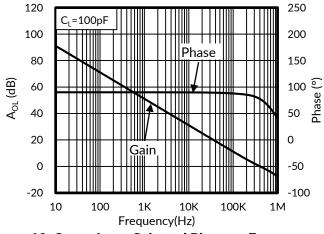


Figure 10. Open-Loop Gain and Phase vs Frequency

8 DETAILED DESCRIPTION

8.1 Overview

The RS854X is a family of Zero-Drift, low-power, rail-to-rail input and output operational amplifiers. These devices operate from 2 V to 5.5 V, are unity-gain stable, and are suitable for a wide range of general-purpose applications. The Zero-Drift architecture provides ultra low offset voltage and near-zero offset voltage drift.

8.2 Feature Description

The RS854X series op amps are unity-gain stable and free from unexpected output phase reversal. They use auto-zeroing techniques to provide low offset voltage and very low drift over time and temperature.

Good layout practice mandates use of a 0.1μ F capacitor placed closely across the supply pins.

For lowest offset voltage and precision performance, circuit layout and mechanical conditions should be optimized. Avoid temperature gradients that create thermoelectric (Seebeck) effects in thermocouple junctions formed from connecting dissimilar conductors. These thermally-generated potentials can be made to cancel by assuring that they are equal on both input terminals.

- Use low thermoelectric-coefficient connections (avoid dissimilar metals).
- Thermally isolate components from power supplies or other heat-sources.
- Shield op amp and input circuitry from air currents, such as cooling fans.

Following these guidelines will reduce the likelihood of junctions being at different temperatures, which can cause thermoelectric voltages of $0.1 \mu V/^{\circ}C$ or higher, depending on materials used.

8.3 Operating Voltage

The RS854X series op amps operate over a power-supply range of +2V to +5.5V ($\pm 1V$ to $\pm 2.75V$). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Parameters that vary over supply voltage or temperature are shown in the Typical Characteristics section of this data sheet.

8.4 Device Functional Modes

The RS854X device has a single functional mode. The device is powered on as long as the power supply voltage is between 2 V (\pm 1 V) and 5.5 V (\pm 2.75 V).

9 APPLICATION AND IMPLEMENTATION

Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Note

The RS854X is a unity-gain stable, precision operational amplifier with very low offset voltage drift; these devices are also free from output phase reversal. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device power-supply pins. In most cases, 0.1μ F capacitors are adequate.

9.2 Typical Applications

9.2.1 Bidirectional Current-Sensing

This single-supply, low-side, bidirectional current-sensing solution detects load currents from -1 A to 1 A. The single-ended output spans from 110 mV to 3.19 V. This design uses the RS854X because of its low offset voltage and rail-to-rail input and output. One of the amplifiers is configured as a difference amplifier and the other provides the reference voltage.

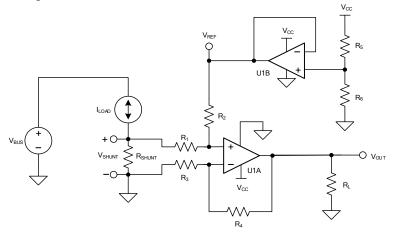


Figure 11. Bidirectional Current-Sensing Schematic

9.2.2 Design Requirements

This solution has the following requirements:

- Supply voltage: 3.3 V
- Input: -1 A to 1 A
- Output: 1.65 V ±1.54 V (110 mV to 3.19 V)

9.2.3 Detailed Design Procedure

The load current, I_{LOAD} , flows through the shunt resistor (R_{SHUNT}) to develop the shunt voltage, V_{SHUNT} . The shunt voltage is then amplified by the difference amplifier, which consists of U1A and R_1 through R_4 . The gain of the difference amplifier is set by the ratio of R_4 to R_3 . To minimize errors, set $R_2 = R_4$ and $R_1 = R_3$. The reference voltage, V_{REF} , is supplied by buffering a resistor divider using U1B. The transfer function is given by Equation 1. $V_{OUT}=V_{SHUNT}\times Gain _{Diff_{Amp}}+V_{REF}$

Where

 $V_{SHUNT} = I_{LOAD} \times R_{SHUNT}$

$$Gain_{Diff_Amp} = \frac{R_4}{R_3}$$

$$V_{\text{REF}} = V_{\text{CC}} \times \left[\frac{R_6}{R_5 + R_6} \right]$$

(1) There are two types of errors in this design: offset and gain. Gain errors are introduced by the tolerance of the shunt resistor and the ratios of R₄ to R₃ and, similarly, R₂ to R₁. Offset errors are introduced by the voltage divider (R₅ and R₆) and how closely the ratio of R₄/R₃ matches R₂/R₁. The latter value impacts the CMRR of the difference amplifier, which ultimately translates to an offset error. Because this is a low-side measurement, the value of V_{SHUNT} is the ground potential for the system load. Therefore, it is important to place a maximum value on V_{SHUNT}. In this design, the maximum value for V_{SHUNT} is set to 100 mV. Equation 2 calculates the maximum value of the shunt resistor given a maximum shunt voltage of 100 mV and maximum load current of 1 A.

$$R_{SHUNT(Max)} = \frac{V_{SHUNT(Max)}}{I_{LOAD(Max)}} = \frac{100 \text{ mV}}{1 \text{ A}} = 100 \text{ m}\Omega$$
(2)

The tolerance of R_{SHUNT} is directly proportional to cost. For this design, a shunt resistor with a tolerance of 0.5% was selected. If greater accuracy is required, select a 0.1% resistor or better.

The load current is bidirectional; therefore, the shunt voltage range is -100 mV to 100 mV. This voltage is divided down by R₁ and R₂ before reaching the operational amplifier, U1A. Take care to ensure that the voltage present at the noninverting node of U1A is within the common-mode range of the device. Therefore, it is important to use an operational amplifier, such as the RS854X, that has a common-mode range that extends below the negative supply voltage. Finally, to minimize offset error, note that the RS854X has a typical offset voltage of $\pm 3\mu V (\pm 30\mu V \text{ maximum})$. Given a symmetric load current of -1 A to 1 A, the voltage divider resistors (R₅ and R₆) must be equal. To be consistent with the shunt resistor, a tolerance of 0.5% was selected. To minimize power consumption, 10-k Ω resistors were used. To set the gain of the difference amplifier, the common-mode range and output swing of the RS854X must be considered. Equation 3 and Equation 4 depict the typical common-mode range and maximum output swing, respectively, of the RS854X given a 3.3-V supply.

The gain of the difference amplifier can now be calculated as shown in Equation 5.

$$Gain_{Diff_{Amp}} = \frac{V_{OUT_{Max}} - V_{OUT_{Min}}}{R_{SHUNT} \times (I_{MAX} - I_{MIN})} = \frac{3.2 \text{ V} - 100 \text{ mV}}{100 \text{ m}\Omega \times [1 \text{ A} - (-1 \text{ A})]} = 15.5 \frac{\text{V}}{\text{V}}$$
(5)

The resistor value selected for R_1 and R_3 was $1k\Omega$. $15.4k\Omega$ was selected for R_2 and R_4 because it is the nearest standard value. Therefore, the ideal gain of the difference amplifier is 15.4 V/V.

The gain error of the circuit primarily depends on R_1 through R_4 . As a result of this dependence, 0.1% resistors were selected. This configuration reduces the likelihood that the design requires a two-point calibration. A simple one-point calibration, if desired, removes the offset errors introduced by the 0.5% resistors.

9.2.4 Application Curve

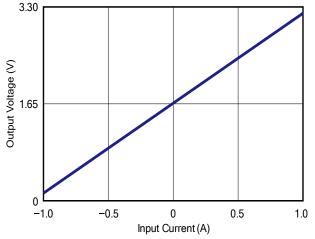


Figure 12. Bidirectional Current-Sensing Circuit Performance: Output Voltage vs Input Current

10 LAYOUT

10.1 Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a 0.1μ F capacitor closely across the supply pins.

These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

10.2 Layout Example

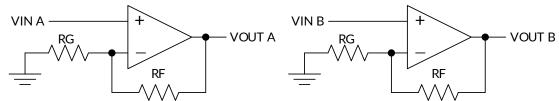
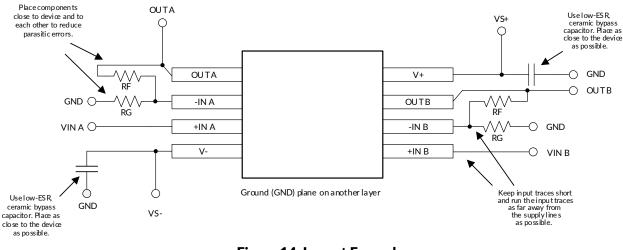
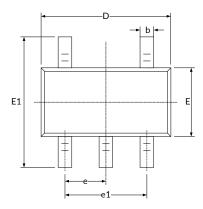
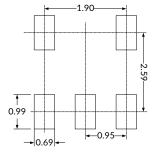
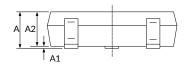



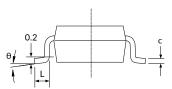
Figure 13. Schematic Representation





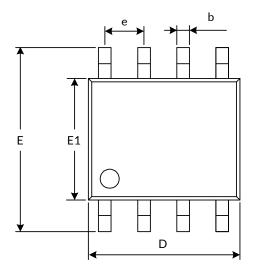
NOTE: Layout Recommendations have been shown for dual op-amp only, follow similar precautions for Single and four.

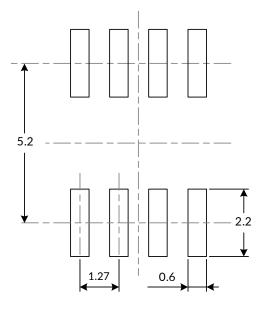



11 PACKAGE OUTLINE DIMENSIONS SOT23-5⁽³⁾

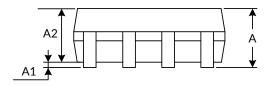
RECOMMENDED LAND PATTERN (Unit: mm)

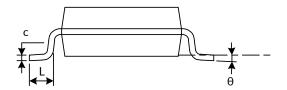
Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Min Max		Max
A ⁽¹⁾	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D ⁽¹⁾	2.820	3.020	0.111	0.119
E ⁽¹⁾	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC) ⁽²⁾		0.037(BSC) ⁽²⁾
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°


NOTE:


1. Plastic or metal protrusions of 0.15mm maximum per side are not included.

BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
 This drawing is subject to change without notice.

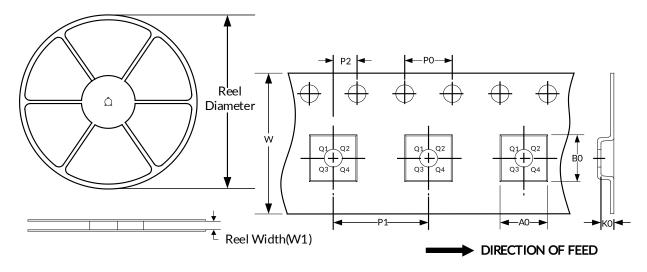



SOP8⁽³⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Simple	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min Max		Min	Max	
A ⁽¹⁾	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.007	0.010	
D ⁽¹⁾	4.800	5.000	0.189	0.197	
e	1.270(BSC) ⁽²⁾		0.050(BSC) ⁽²⁾	
E	5.800	6.200	0.228	0.244	
E1 ⁽¹⁾	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

NOTE:


1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
SOP8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.