

7MHz, Rail-to-Rail I/O CMOS Operational Amplifier

1 FEATURES

- High Gain Bandwidth: 7MHz
- Rail-to-Rail Input and Output ±0.7mV Typical Vos
- Input Voltage Range: -0.1V to +5.6V with Vs = 5.5V
- Supply Range: +2.5V to +5.5V
- Specified Up to +125°C

2 APPLICATIONS

- Sensors
- Photodiode Amplification
- Active Filters
- Test Equipment
- Driving A/D Converters

3 DESCRIPTIONS

The RS62XA families of products offer low voltage operation and rail-to-rail input and output, as well as excellent speed/power consumption ratio, providing an excellent bandwidth (7MHz) and slew rate of 3.7V/µs. The op-amps are unity gain stable and feature an ultralow input bias current.

The devices are ideal for sensor interfaces, active filters and portable applications. The RS62XA families of operational amplifiers are specified at the full temperature range of -40°C to +125°C under single or dual power supplies of 2.5V to 5.5V.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE(NOM)
RS622A	TSSOP8	3.00mm×4.40mm
RS624A	TSSOP14	5.00mm×4.40mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

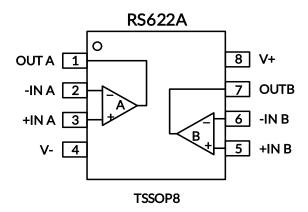
1 FEATURES	
2 APPLICATIONS	
3 DESCRIPTIONS	1
4 REVISION HISTORY	
5 PACKAGE/ORDERING INFORMATION (1)	4
6 PIN CONFIGURATION AND FUNCTIONS	5
7 SPECIFICATIONS	
7.1 Absolute Maximum Ratings	7
7.2 ESD Ratings	7
7.3 Recommended Operating Conditions	7
7.4 Electrical Characteristics	8
7.5 Typical Characteristics	
8 APPLICATION AND IMPLEMENTATION	
8.1 Application Notes	13
8.2 Layout Guidelines	13
8.3 Instrumentation Amplifier	13
9 PACKAGE OUTLINE DIMENSIONS	14
10 TADE AND REEL INCORMATION	16

4 REVISION HISTORY

Note: Page numbers for previous revisions may different from page numbers in the current version.

Version	Change Date	Change Item
A.1	2025/01/08	Initial version completed

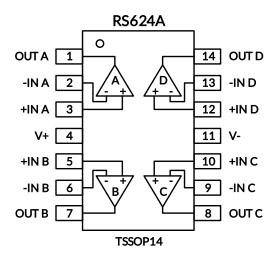
5 PACKAGE/ORDERING INFORMATION (1)


Orderable Device	Package Type	Pin	Channel	Op Temp(°C)	Device Marking ⁽²⁾	MSL (3)	Package Qty
RS622AXQ	TSSOP8	8	2	-40°C ~125°C	RS622A	MSL3	Tape and Reel, 4000
RS624AXQ	TSSOP14	14	4	-40°C ~125°C	RS624A	MSL3	Tape and Reel, 4000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F. Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.

6 PIN CONFIGURATION AND FUNCTIONS


PIN DESCRIPTION

	PIN	1.00 (1)	DESCRIPTION	
NAME	TSSOP8	I/O ⁽¹⁾		
-INA	2	1	Inverting input, channel A	
+INA	3	1	Noninverting input, channel A	
-INB	6	1	Inverting input, channel B	
+INB	5	I	Noninverting input, channel B	
OUTA	1	0	Output, channel A	
OUTB	7	0	Output, channel B	
V-	4	-	Negative (lowest) power supply	
V+	8	-	Positive (highest) power supply	

⁽¹⁾ I = Input, O = Output.

PIN CONFIGURATION AND FUNCTIONS

PIN DESCRIPTION

NANAE	PIN	1/0/1	DESCRIPTION	
NAME	TSSOP14	I/O ⁽¹⁾	DESCRIPTION	
-INA	2	I	Inverting input, channel A	
+INA	3	I	Noninverting input, channel A	
-INB	6	I	Inverting input, channel B	
+INB	5	1	Noninverting input, channel B	
-INC	9	1	Inverting input, channel C	
+INC	10	1	Noninverting input, channel C	
-IND	13	1	Inverting input, channel D	
+IND	12	I	Noninverting input, channel D	
OUTA	1	0	Output, channel A	
OUTB	7	0	Output, channel B	
OUTC	8	0	Output, channel C	
OUTD	14	0	Output, channel D	
V-	11	-	Negative (lowest) power supply	
V+	4	-	Positive (highest) power supply	

⁽¹⁾ I = Input, O = Output.

7 SPECIFICATIONS

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT	
	Supply, Vs=(V+) - (V-)			7		
Voltage	Signal input pin ⁽²⁾		(V-)-0.5	(V+) +0.5	V	
	Signal output pin (3)		(V-)-0.5	(V+) +0.5		
	Signal input pin (2)		-10	10	mA	
Current	Current Signal output pin (3)		-200	200	mA	
	Output short-circuit (4)		Conti	Continuous		
0	Dealtons the amend inspecdence (5)	TSSOP8		240	06 () 4 (
Αιθ	Package thermal impedance (5)	TSSOP14		90	°C/W	
	Operating range, T _A		-40	125		
Temperature	Junction, T _J ⁽⁶⁾		-40	150	°C	
	Storage, T _{stg}		-65	150		

⁽¹⁾ Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

- (2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.
- (3) Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±200mA or less.
- (4) Short-circuit to ground, one amplifier per package.
- (5) The package thermal impedance is calculated in accordance with JESD-51.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
\/	Electrostatic discharge	Human-Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±5000	\/
V _(ESD)	Electrostatic discharge	Machine Model (MM)	±400	V

⁽¹⁾ JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT	
Supply voltage Ve= (VL) (V)	Single-supply	2.5		5.5	\/	
Supply voltage, Vs= (V+) - (V-)	Dual-supply	±1.25		±2.75	V	

7.4 Electrical Characteristics

(At T_A =+25°C, V_S =5V, R_L = 10k Ω connected to V_S /2, and V_{OUT} = V_S /2, Full (9) = -40°C to +125°C, unless otherwise noted.) (1)

	DADAMETED	CONDITIONS	_	RS62XA			
PARAMETER		CONDITIONS	Tı	MIN (2)	TYP (3)	MAX (2)	UNIT
POWER	SUPPLY	1					
Vs	Operating Voltage Range		25°C	2.5		5.5	V
ΙQ	Quiescent Current Per Amplifier		25°C		750	1200	μΑ
DCDD	D C	Vs=2.5V to 5.5V,	25°C	75	93		-10
PSRR	Power-Supply Rejection Ratio	V _{CM} =(V-)+0.5V	Full	72			dB
INPUT							
Vos	Input Offset Voltage		25°C	-3	±0.7	3	mV
Vos T _C	Input Offset Voltage Average Drift		Full		±2		μV/°C
IB	Input Bias Current (4) (5)		25°C		±1	±10	pА
los	Input Offset Current (4)		25°C		±1	±10	pА
V _{CM}	Common-Mode Voltage Range	Vs=5.5V	25°C	-0.1		5.6	V
		Vs=5.5V,	25°C	74	92		dB
CMRR C	CMRR Common-Mode Rejection Ratio	V _{CM} =-0.1V to 4V	Full	68			
		Vs= 5.5V, V _{CM} =-0.1V to 5.6V	25°C	62	83		
			Full	60			
OUTPU	Т						
		R _L =2KΩ, Vo=0.15V to 4.85V	25°C	85	102		dB
۸	Open-Loop Voltage Gain		Full	75			
Aol	Open-Loop Voltage Gain	R _L =10KΩ,	25°C	88	106		
		Vo=0.05V to 4.95V	Full	78			
	Output Swing From Rail	R _L =2KΩ	25°C		40		
	Output Swing From Rail	R _L =10KΩ	23 C		7		mV
Іоит	Output Short-Circuit Current (6) (7)		25°C		180		mA
FREQUE	ENCY RESPONSE						
SR	Slew Rate (8)		25°C		3.7		V/µs
GBP	Gain-Bandwidth Product		25°C		7		MHz
PM	Phase Margin		25°C		64		0
ts	Settling Time, 0.1%				0.5		μs
	Overload Recovery Time	V _{IN} •Gain≥V _S			0.5		μs
NOISE							
	Input Voltage Noise Density	f = 1KHz	25°C		11		nV/√H:
en	Input Voltage Noise Density	f = 10KHz	25°C		7.5		nV/√H:

NOTE:

- (1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
- (2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (4) This parameter is ensured by design and/or characterization and is not tested in production.
- (5) Positive current corresponds to current flowing into the device.
- (6) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (7) Short circuit test is a momentary test.
- (8) Number specified is the slower of positive and negative slew rates.
- (9) Specied by characterization only.

7.5 Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S =5V, R_L = 10k Ω connected to V_S /2, V_{OUT} = V_S /2, unless otherwise noted.

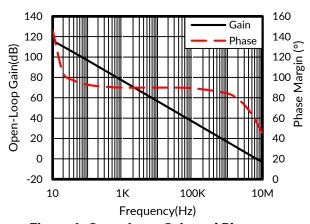


Figure 1. Open-Loop Gain and Phase vs Frequency

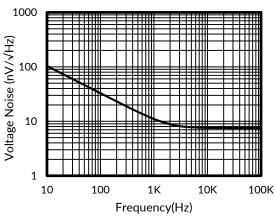


Figure 3. Input Voltage Noise Spectral Density vs Frequency

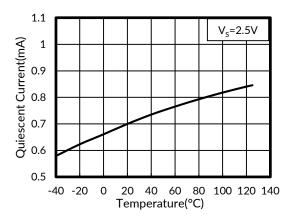


Figure 5. Quiescent Current vs Temperature

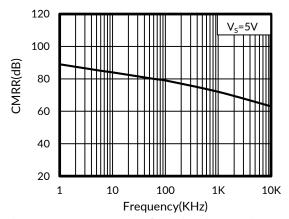


Figure 2. Common-Mode Rejection Ratio vs Frequency

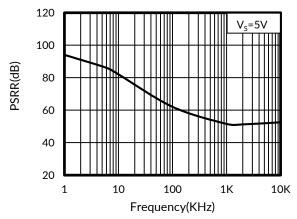


Figure 4. Power-Supply Rejection Ratio vs Frequency

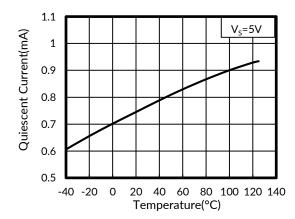


Figure 6. Quiescent Current vs Temperature

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S =5V, R_L = 10k Ω connected to V_S /2, V_{OUT} = V_S /2, unless otherwise noted.

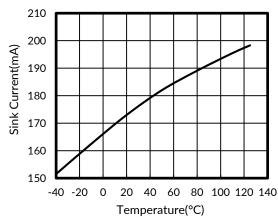


Figure 7. Sink Current vs Temperature

Figure 9. Input Bias Current vs Temperature

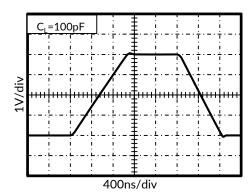


Figure 11. Large-Signal Step Response

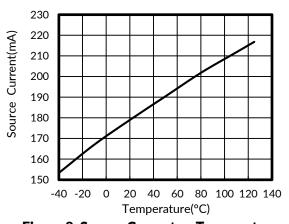


Figure 8. Source Current vs Temperature

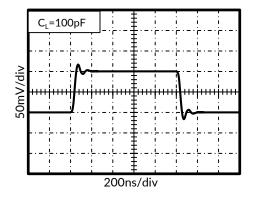
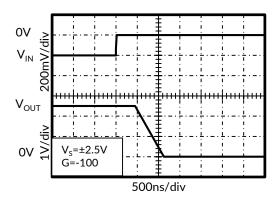
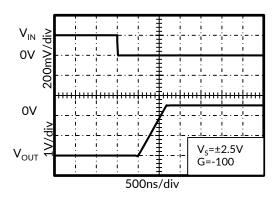


Figure 10. Small-Signal Step Response




Figure 12. Positive Overload Recovery

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

At T_A = +25°C, V_S =5V, R_L = 10k Ω connected to V_S /2, V_{OUT} = V_S /2, unless otherwise noted.

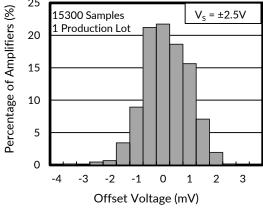


Figure 13. Negative Overload Recovery

Figure 14. Offset Voltage Production Distribution

8 APPLICATION AND IMPLEMENTATION

Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Notes

The RS62XA is high precision, rail-to-rail operational amplifiers that can be run from a single-supply voltage 2.5V to 5.5V (± 1.25 V to ± 2.75 V). Supply voltages higher than 7V (absolute maximum) can permanently damage the amplifier. Rail-to-rail input and output swing significantly increases dynamic range, especially in low-supply applications. Good layout practice mandates use of a 0.1μ F capacitor place closely across the supply pins.

8.2 Layout Guidelines

Attention to good layout practices is always recommended. Keep traces short. When possible, use a PCB ground plane with surface-mount components placed as close to the device pins as possible. Place a $0.1\mu F$ capacitor closely across the supply pins. These guidelines should be applied throughout the analog circuit to improve performance and provide benefits such as reducing the EMI susceptibility.

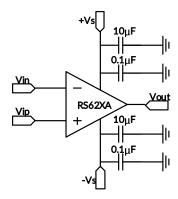


Figure 15. Amplifier with Bypass Capacitors

8.3 Instrumentation Amplifier

In the three-op amp, instrumentation amplifier configuration shown in Figure 16.

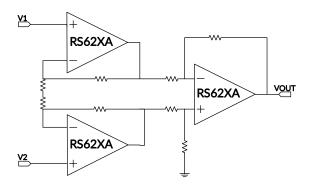
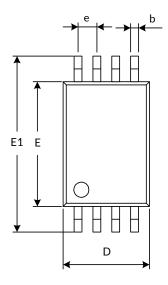
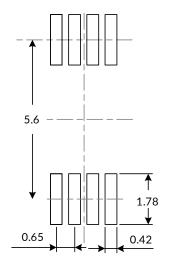
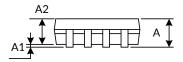
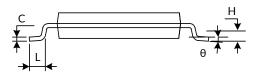
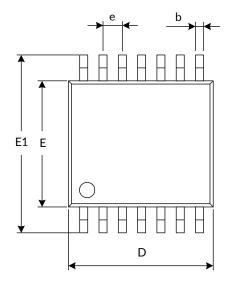




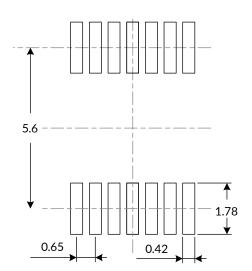
Figure 16. Amplifier Instrumentation Amplifier




9 PACKAGE OUTLINE DIMENSIONS TSSOP8 (3)

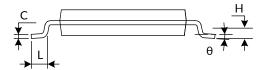
RECOMMENDED LAND PATTERN (Unit: mm)


Completel.	Dimensions I	n Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
A (1)		1.200		0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D (1)	2.900	3.100	0.114	0.122	
E ⁽¹⁾	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650(BSC) ⁽²⁾		0.026(BSC) (2)		
L	0.500	0.700	0.020	0.028	
Н	0.250	(TYP)	0.010	(TYP)	
θ	1°	7°	1°	7°	


NOTE:

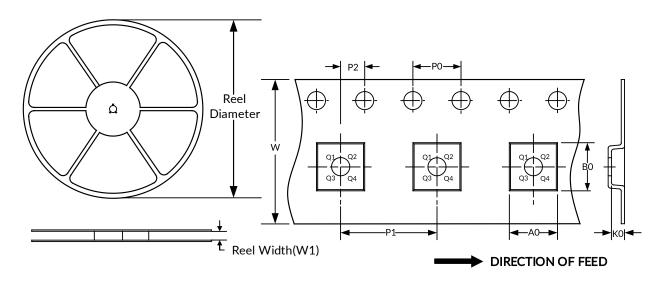
- Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
 This drawing is subject to change without notice.




TSSOP14 (3)

RECOMMENDED LAND PATTERN (Unit: mm)

Complete	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A (1)		1.200		0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D (1)	4.860	5.100	0.191	0.201	
E (1)	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650(0.650(BSC) ⁽²⁾		BSC) (2)	
L	0.500	0.700	0.020	0.028	
Н	0.250)(TYP)	0.010	(TYP)	
θ	1°	7°	1°	7°	


NOTE:

- Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
 This drawing is subject to change without notice.

10 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP8	13"	12.4	6.90	3.45	1.65	4.0	8.0	2.0	12.0	Q1
TSSOP14	13"	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.