

4:1 High-Speed USB Multiplexer/Switch

1 FEATURES

- Wide Bandwidth: 550MHz
- Supply Operation +2.5V to +4.4V
- Low ON Resistance, 6Ω (TYP) at 3.3V
- 1.8V Logic Threshold Compatibility for Control Inputs
- Rail-to-Rail Operation
- Fast Switching Time
- Operating Temperature Range: -40°C to 125°C
- Packages: UQFN2.6X1.8-16

2 APPLICATIONS

- Routes Signals for USB 1.0, 1.1, and 2.0
- MP3 and Other Personal Media Players
- Mobile POS and Portable POS
- USB Switching for TV Display Panel

3 DESCRIPTIONS

The RS2274 is a bi-directional, low-power, high-speed USB 2.0 switch comprised of dual 4:1 multiplexers. RS2274 has very low on-resistance, allowing the inputs to be connected to the outputs without adding propagation delay. It is optimized for switching from four high-speed (480Mbps) sources or any combination of high-speed and full-/low-speed USB/UART sources to one USB 2.0 connector.

The RS2274 is available in Green UQFN2.6X1.8-16 packages. It operates over an ambient temperature range of -40°C to 125° C.

Device Information⁽¹⁾

	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
P/	ART NUMBER	PACKAGE	BODY SIZE (NOM)						
	RS2274	UQFN2.6X1.8-16	2.60mm×1.80mm						
(1)) For all available packages, see the orderable addendum at the end								

 For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 FEATURES	
2 APPLICATIONS	
3 DESCRIPTIONS	
4 REVISION HISTORY	
5 PACKAGE/ORDERING INFORMATION ⁽¹⁾	
6 LOGIC FUNCTION	
7 PIN CONFIGURATIONS	
8 SPECIFICATIONS	
8.1 Absolute Maximum Ratings7	
8.2 ESD Ratings	
8.3 Recommended Operating Conditions7	
8.4 DC Electrical Characteristics	
8.5 AC Electrical Characteristics	
9 PARAMETER MEASUREMENT INFORMATION	
10 PACKAGE OUTLINE DIMENSIONS	
11 TAPE AND REEL INFORMATION	

4 REVISION HISTORY

Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSION	Change Date	Change Item
A.0	2024/05/17	Preliminary version completed
A.0.1	2024/05/20	 Modify FEATURES, APPLICATIONS and DESCRIPTIONS Modify PIN DESCRIPTION Add UQFN2.6X1.8-16 Land Pattern
A.1	2025/01/06	Initial version completed
A.2	2025/02/11	Delete QFN3X3-16 Package

5 PACKAGE/ORDERING INFORMATION⁽¹⁾

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
RS2274	RS2274XTQQ16	-40°C ~125°C	UQFN2.6X1.8-16	2274	MSL3	Tape and Reel, 3000

NOTE:

(1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.

(2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

(3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F. Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.

6 LOGIC FUNCTION

FUNCTION TABLE

ŌĒ	SELO	SEL1	Function
1	Х	Х	D+, D- Switch paths open
0	0	0	D+ = HSD0+, D- = HSD0-
0	1	0	D+ = HSD1+, D- = HSD1-
0	0	1	D+ = HSD2+, D- = HSD2-
0	1	1	D+ = HSD3+, D- = HSD3-

X=Don't care

NOTE: Input and output pins are identical and inter-changeable. Either may be considered an input or output; signals pass equally well in either direction.

7 PIN CONFIGURATIONS

UQFN2.6X1.8-16

PIN DESCRIPTION

NAME	PIN			
NAME	UQFN2.6X1.8-16	FUNCTION		
D+	2	D+ common port		
D-	3	D- common port		
HSD0+	13	D+ from first source path		
HSD0-	14	D- from first source path		
HSD1+	11	D+ from second source path		
HSD1-	12	D- from second source path		
HSD2+	10	D+ from third source path		
HSD2-	9	D- from third source path		
HSD3+	8	D+ from fourth source path		
HSD3-	7	D- from fourth source path		
GND	1	Ground		
Vcc	4	Power Supply		
ŌĒ	15	Enable control pin, Pull Low enable this device		
SEL1	5	Digital Control Pin		
SELO	6	Digital Control Pin		
NC	16	No connect		

NOTE:

1. This analog switch is no direction, each port can as input or output.

8 SPECIFICATIONS

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

SYMBOL	PARAMETER	MIN	MAX	UNIT
Vcc	Supply Voltage	-0.5	5.25	V
VCNTRL	DC Input Voltage (SEL1, SEL0, $\overline{\text{OE}}$, SELS) ⁽²⁾	-0.5	Vcc	V
Vsw	DC Switch I/O Voltage ⁽¹⁾	-0.5	5.25	V
Іік	DC Input Diode Current	-30		mA
ALθ	Package thermal impedance ⁽³⁾		145	°C/W
Tstg	Storage Temperature	-65	150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

(2) All unused digital inputs of the device must be held at V_{cc} or GND to ensure proper device operation.

(3) The package thermal impedance is calculated in accordance with JESD-51.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

SYMBOL	PARAMETER	VALUE	UNIT	
	IEC61000-4-2 System on USB connector pins D+ & D-	Contact	±8	
		D+, D- to GND ±7		
	Human Body Model, JEDEC: JESD22-A114	Power to GND	±7	кv
ESD		All Other Pins	±4	
	Charged-Device Model (CDM), ANSI/ESDA/JEDEC JS-002-2	±1000	V	
	Machine Model (MM), JESD22-A115C (2010)	±200	v	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{cc}	Supply Voltage	2.5	4.4	V
VCNTRL	Control Input Voltage (SEL1, SEL0, $\overline{\mathrm{OE}}$ and SELS)	0	Vcc	V
Vsw	Switch I/O Voltage	-0.5	4.4	V
TA	Operating Temperature	-40	125	°C

8.4 DC Electrical Characteristics

All typical values are for V_{CC}=3.3V at 25°C unless otherwise specified, FULL = -40°C - 125°C.

PARAMETER	SYMBOL	CONDITIONS	Vcc (V)	TA	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
On Resistance	D (1)	$\lambda = 0.4 \lambda = 0.00$	2.2	25°C		6	7	0
On-Resistance	KON (1)	$v_{SW} = 0.4v$, $I_{ON} = 8mA$, Figure 1	3.3	FULL			9	Ω
On-Resistance Match		$\lambda = 0.4 \lambda = 0.000$	2.2	25°C		0.34	0.5	0
Between Channels	ΔKON	$v_{SW} = 0.4v$, $I_{ON} = \delta IIIA$	3.3	FULL			0.6	12
Control Input Leakage	lin	All Combinations of $\overline{\text{OE}}$ SEL1 & SEL0 in the Truth Table (1=V _{CC} , 0=0V)	4.4	FULL	-1		1	μΑ
Off State Leakage	loz	0≤Dn, HSD0n, HSD1n, HSD2n, HSD3n≤4.4V	4.4	FULL	-1		1	μA
Power-Off Leakage Current (All I/O Ports)	IOFF	Vsw =0V to 4.4V, Figure 2	0	FULL	-1		1	μA
Sleep Mode Supply Current	ICCSLP	0E=Vcc	4.4	FULL			1	μA
Active Mode Supply Current	Іссаст	All Active Modes in Truth Table	4.4	FULL		8	16	μA
Increase in Icc Current per	I	V _{CNTRL} =1.8V	4.4	FULL			3.5	μA
Control Input and V _{CC}	ICCT	V _{CNTRL} =1.2V	4.4	FULL			4	μA
Clamp Diode Voltage	Vік	I _{IN} =-18mA	2.5	FULL			-1.2	V
Control Input Voltage High	VIH	SEL1, SEL0, \overline{OE}	2.5 to 4.4	FULL	1			V
Control Input Voltage Low	VIL	SEL1, SELO, OE	2.5 to 4.4	FULL			0.35	V

(1) Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

8.5 AC Electrical Characteristics

All typical values are for V_{CC}=3.3V at 25°C unless otherwise specified, FULL = -40°C - 125°C.

PARAMETER	SYMBOL	CONDITIONS	TA	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
Turn-On Time when Switching from One USB Path (or Disabled $\overline{\text{OE}}$ =1) to Another USB Path	ton	R _L =50Ω, C _L =35pF, V _{SW} =0.8V, Figure 3, Figure 4	25°C		200		μs
Turn-Off Time, Turning Off Any of the USB Paths	toff	$R_L = 50\Omega$, $C_L = 35pF$, $V_{SW} = 0.8V$, Figure 3, Figure 4	25°C		92		ns
Propagation Delay ⁽¹⁾	tpd	C _L =5pF, R _L =50Ω, Figure 3, Figure 5	25°C		0.35		ns
Slow Turn-On/Off Switch Paths ⁽¹⁾	t _{RF}	C_L =5pF, Dn at 0V or 3.6V, 40.5 Ω in series with switch 10% to 90%	25°C		4.5		ns
Break-Before-Make Time	tввм	R _L =50Ω, C _L =35pF, V _{SW1} =V _{SW2} =0.8V, Figure 7	25°C		200		μs
-3dB Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$, Figure 8	25°C		550		MHz
Off Isolation	OIRR	RL =50Ω, f=240MHz, Figure 9	25°C		-40		dB
Channel-to-Channel Crosstalk	Xtalk	RL =50Ω, f=240MHz, Figure 10	25°C		-40		dB
Pulse Skew (1)	tsk(P)	Vsw =0.2Vdiff _{PP} , C _L =5pF, Figure 6	25°C		25		ps
Skew Between Differential Signals Within a Pair ⁽¹⁾	tsk(I)	Vsw =0.2Vdiff _{PP} , C _L =5pF, Figure 6	25°C		25		ps
Input Capacitance	CIN	f=1MHz, V_{IN} =0 to V_{CC}	25°C		3		pF
D+/D- On Capacitance	C _{ON}	f=1MHz, V_{IN} =0 to V_{CC}	25°C		11.5		pF
HSD0n, HSD1n, HSD2n, HSD3n Off Capacitance	COFF	f=1MHz, V _{IN} =0 to V _{CC}	25°C		2.8		pF

(1) This parameter is ensured by design and/or characterization and is not tested in production.

(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

9 PARAMETER MEASUREMENT INFORMATION

Figure 1. On Resistance

 R_L , R_S and C_L are functions of the application environment (see AC Tables for specific values) C_L includes test fixture and stray capacitance.

Figure 3. AC Test Circuit Load

**Each switch port is tested separately

Figure 2. Off Leakage

Figure 6. Skew Test Waveforms t_{SK(P)} = | t_{PLH-} - t_{PHL-} | or | t_{PLH+} - t_{PHL+} | t_{SK(I)} = | t_{PLH-} - t_{PHL+} | or | t_{PLH+} - t_{PHL-} |

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 8. Bandwidth

Figure 12. Channel On Capacitance

HSDn

HSDn

 $V_{Sel} = 0 \text{ or } V_{CC}$

S

Ł

10 PACKAGE OUTLINE DIMENSIONS UQFN2.6X1.8-16⁽³⁾

SIDE VIEW

2.90

RECOMMENDED LAND PATTERN (Unit: mm)

Symphol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Мах		
A ⁽¹⁾	0.450	0.550	0.018	0.022		
A1	0.000	0.046	0.000	0.002		
A3	0.110 (REF) ⁽²⁾		0.004 (REF) ⁽²⁾		
b	0.150	0.250	0.006	0.010		
E ⁽¹⁾	2.550	2.650	0.100	0.104		
D ⁽¹⁾	1.750	1.850 0.0		0.073		
e	0.400 (TYP)		0.016	(TYP)		
L	0.350	0.450	0.014	0.018		
L1	0.450	0.550 0.018		0.022		

NOTE:

1. Plastic or metal protrusions of 0.075mm maximum per side are not included.

2. REF is the abbreviation for Reference.

3. This drawing is subject to change without notice.

11 TAPE AND REEL INFORMATION REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel	Reel Width	A0	B0	K0	P0	P1	P2	W	Pin1
	Diameter	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
UQFN2.6X1.8-16	7"	8.3	2.10	2.90	0.75	4.0	4.0	2.0	8.0	Q1

NOTE:

1. All dimensions are nominal.

2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.