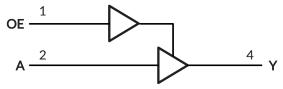




# RS1G126-Q1 Single Bus Buffer Gate With 3-State Output


#### 1 FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified with the Grade 1
- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption: 1μA (Max)
- Operating Temperature Range:
   -40°C to 125°C
- Inputs Accept Voltage to 5.5V
- ±24mA Output Drive at Vcc=3.0V
- Latch-up Performance Exceeds 100mA
- Micro Size Packages: SC70-5

#### 2 APPLICATIONS

- Fully Qualified for Automotive Applications
- Automotive Infotainment and Cluster
- Automotive Zonal & Body Domain Controller
- Automotive HEV/powertrain
- HEV/EV Battery Management System (BMS)

## **Simplified Schematic**



#### **3 DESCRIPTIONS**

The single buffer is designed for 1.65V to 5.5V  $V_{\text{CC}}$  operation. The RS1G126-Q1 device is single line driver with 3-state output. The output is disabled when the output-enable input is low.

This device is fully specified for partial-power-down applications using  $I_{\rm off}$ . The  $I_{\rm off}$  circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pulldown resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The RS1G126-Q1 is available in Green SC70-5 packages. It operates over an ambient temperature range of -40°C to 125°C.

#### **Device Information (1)**

| PART NUMBER | PACKAGE | BODY SIZE (NOM) |  |  |
|-------------|---------|-----------------|--|--|
| RS1G126-Q1  | SC70-5  | 2.10mm×1.25mm   |  |  |

For all available packages, see the orderable addendum at the end of the data sheet.

#### 4 FUNCTION TABLE

| INP | OUTPUT |   |
|-----|--------|---|
| OE  | Α      | Υ |
| Н   | Н      | Н |
| Н   | L      | L |
| L   | X      | Z |

H=HIGH Logic Level

L =LOW Logic Level

X=Don't Care

Z=High-impedance OFF-state



# **Table of Contents**

| 1 FEATURES                           | 1  |
|--------------------------------------|----|
| 2 APPLICATIONS                       | 1  |
| 3 DESCRIPTIONS                       |    |
| 4 FUNCTION TABLE                     | 1  |
| 5 REVISION HISTORY                   | 3  |
| 6 PACKAGE/ORDERING INFORMATION (1)   | 4  |
| 7 PIN CONFIGURATIONS                 | 5  |
| 8 SPECIFICATIONS                     | 6  |
| 8.1 Absolute Maximum Ratings         | 6  |
| 8.2 ESD Ratings                      | 6  |
| 9 ELECTRICAL CHARACTERISTICS         | 7  |
| 9.1 Recommended Operating Conditions | 7  |
| 9.2 DC Characteristics               |    |
| 9.3 Switching Characteristics        | 9  |
| 9.4 Operating Characteristics        | 9  |
| 10 PARAMETER MEASUREMENT INFORMATION | 10 |
| 11 PACKAGE OUTLINE DIMENSIONS        | 11 |
| 12 TAPE AND REEL INFORMATION         | 12 |



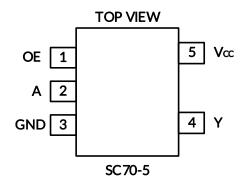
## **5 REVISION HISTORY**

Note: Page numbers for previous revisions may different from page numbers in the current version.

| Version | Change | Date  | Change Item                   |  |  |  |
|---------|--------|-------|-------------------------------|--|--|--|
| A.0     | 2024/0 | 07/18 | Preliminary version completed |  |  |  |
| A.1     | 2025/0 | )5/08 | Initial version completed     |  |  |  |



# 6 PACKAGE/ORDERING INFORMATION (1)


| PRODUCT        | ORDERING<br>NUMBER | TEMPERATURE<br>RANGE | PACKAGE<br>LEAD | Lead<br>finish/Ball<br>material <sup>(2)</sup> | MSL Peak<br>Temp <sup>(3)</sup> | PACKAGE<br>MARKING | PACKAGE<br>OPTION     |
|----------------|--------------------|----------------------|-----------------|------------------------------------------------|---------------------------------|--------------------|-----------------------|
| RS1G126<br>-Q1 | RS1G126XC5<br>-Q1  | -40°C ~125°C         | SC70-5 (5)      | NIPDAUAG                                       | MSL1-260°-<br>Unlimited         | 1G126              | Tape and<br>Reel,3000 |

#### NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) Lead finish/Ball material. Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (3) RUNIC classify the MSL level with using the common preconditioning setting in our assembly factory conforming to the JEDEC industrial standard J-STD-20F, Please align with RUNIC if your end application is quite critical to the preconditioning setting or if you have special requirement.
- (4) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (5) Equivalent to SOT353.



# **7 PIN CONFIGURATIONS**



# **PIN DESCRIPTION**

| PIN    | NANAE | L(O T)(DE (1) | FUNCTION        |  |  |  |  |
|--------|-------|---------------|-----------------|--|--|--|--|
| SC70-5 | NAME  | I/O TYPE (1)  | FUNCTION        |  |  |  |  |
| 1      | OE    | I             | OE Enable/Input |  |  |  |  |
| 2      | Α     | I             | A Input         |  |  |  |  |
| 3      | GND   | -             | Ground Pin      |  |  |  |  |
| 4      | Υ     | 0             | Y Output        |  |  |  |  |
| 5      | Vcc   | -             | Power Pin       |  |  |  |  |

<sup>(1)</sup> I=input, O=output.



### **8 SPECIFICATIONS**

#### 8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

|                  | •                                                                    |                          | MIN  | MAX     | UNIT |
|------------------|----------------------------------------------------------------------|--------------------------|------|---------|------|
| V <sub>CC</sub>  | Supply voltage range                                                 |                          | -0.5 | 6.5     | V    |
| Vı               | Input voltage range (2)                                              |                          | -0.5 | 6.5     | V    |
| Vo               | Voltage range applied to any output in the high-impedance            | e or power-off state (2) | -0.5 | 6.5     | V    |
| Vo               | Voltage range applied to any output in the high or low state (2) (3) |                          |      | Vcc+0.5 | V    |
| lıĸ              | Input clamp current V <sub>I</sub>                                   | ′ı<0                     |      | -50     | mA   |
| Іок              | Output clamp current Vo                                              | ′o<0                     |      | -50     | mA   |
| lo               | Continuous output current                                            |                          |      | ±50     | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND                    |                          |      | ±100    | mA   |
| θја              | Package thermal impedance (4)                                        | C70-5                    |      | 380     | °C/W |
| Tر               | Junction temperature (5)                                             |                          | -65  | 150     | °C   |
| T <sub>stg</sub> | Storage temperature                                                  |                          | -65  | 150     | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of  $V_{CC}$  is provided in the Recommended Operating Conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $R_{\theta JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$ . All numbers apply for packages soldered directly onto a PCB.

### 8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

|                    |                         |                                              | VALUE | UNIT |
|--------------------|-------------------------|----------------------------------------------|-------|------|
|                    |                         | Human-Body Model (HBM), per AEC Q100-002 (1) | ±2000 | V    |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-Device Model (CDM), per AEC Q100-011 | ±1000 | V    |
|                    |                         | Latch-Up (LU), per AEC Q100-004              | ±100  | mA   |

<sup>(1)</sup> AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.



#### **ESD SENSITIVITY CAUTION**

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.



# 9 ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at T<sub>A</sub> = +25°C, unless otherwise noted.) (1)

**9.1 Recommended Operating Conditions** 

| PARAMETER                     | SYMBOL                                | TEST CONDITIONS                            | MIN                    | MAX                    | UNIT  |
|-------------------------------|---------------------------------------|--------------------------------------------|------------------------|------------------------|-------|
| Complex Valtage               |                                       | Operating                                  | 1.65                   | 5.5                    | V     |
| Supply Voltage                | V <sub>CC</sub>                       | Data retention only                        | 1.5                    | 5.5                    | \ \ \ |
|                               |                                       | V <sub>CC</sub> =1.65V to 1.95V            | 0.65 x V <sub>CC</sub> |                        |       |
| High Lavellemet Valtage       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | V <sub>CC</sub> =2.3V to 2.7V              | 1.7                    |                        | V     |
| High-Level Input Voltage      | V <sub>IH</sub>                       | V <sub>CC</sub> =3V to 3.6V                | 2.3                    |                        | \ \ \ |
|                               |                                       | V <sub>CC</sub> =4.5V to 5.5V              | 0.7 x Vcc              |                        |       |
|                               | V <sub>IL</sub>                       | V <sub>CC</sub> =1.65V to 1.95V            |                        | 0.25 x V <sub>CC</sub> |       |
| Lave Lavel Innest Valtage     |                                       | V <sub>CC</sub> =2.3V to 2.7V              |                        | 0.7                    | V     |
| Low-Level Input Voltage       |                                       | V <sub>CC</sub> =3V to 3.6V                |                        | 0.8                    | \ \ \ |
|                               |                                       | V <sub>CC</sub> =4.5V to 5.5V              |                        | 0.3 x V <sub>CC</sub>  |       |
| Input Voltage                 | Vı                                    |                                            | 0                      | 5.5                    | ٧     |
| Output Voltage                | Vo                                    |                                            | 0                      | Vcc                    | V     |
|                               |                                       | V <sub>CC</sub> =1.8V ± 0.15V, 2.5V ± 0.2V |                        | 20                     |       |
| Input Transition Rise or Fall | t <sub>r</sub> , t <sub>f</sub>       | V <sub>CC</sub> =3.3V ± 0.3V               |                        | 10                     | ns/V  |
|                               |                                       | V <sub>CC</sub> =5V ± 0.5V                 |                        | 5                      | 1     |
| Operating Temperature         | TA                                    |                                            | -40                    | 125                    | °C    |

<sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation.



# 9.2 DC Characteristics

| F               | PARAMETER        | TEST CONDITIONS                                                            | Vcc            | TEMP  | MIN <sup>(2)</sup> | <b>TYP</b> (3) | MAX <sup>(2)</sup> | UNIT |
|-----------------|------------------|----------------------------------------------------------------------------|----------------|-------|--------------------|----------------|--------------------|------|
| V <sub>OH</sub> |                  | Ι <sub>ΟΗ</sub> = -100μΑ                                                   | 1.65V to 5.5V  |       | Vcc-0.1            |                |                    |      |
|                 |                  | I <sub>OH</sub> = -4mA                                                     | 1.65V          |       | 1.2                |                |                    |      |
|                 |                  | I <sub>OH</sub> = -8mA                                                     | 2.3V           | Full  | 1.9                |                |                    | V    |
|                 |                  | I <sub>OH</sub> = -16mA                                                    | 3V             | Full  | 2.4                |                |                    | V    |
|                 |                  | I <sub>OH</sub> = -24mA                                                    | 3 V            |       | 2.3                |                |                    |      |
|                 |                  | I <sub>OH</sub> = -32mA                                                    | 4.5V           |       | 3.8                |                |                    |      |
| V               |                  | I <sub>OL</sub> = 100μA                                                    | 1.65V to 5.5V  |       |                    |                | 0.1                |      |
|                 |                  | I <sub>OL</sub> = 4mA                                                      |                |       |                    |                | 0.45               |      |
|                 |                  | I <sub>OL</sub> = 8mA                                                      | 2.3V           | Full  |                    |                | 0.3                | V    |
|                 | $V_{OL}$         | I <sub>OL</sub> = 16mA                                                     | - 3V           | Full  |                    |                | 0.4                | V    |
|                 |                  | I <sub>OL</sub> = 24mA                                                     |                |       |                    |                | 0.55               |      |
|                 |                  | I <sub>OL</sub> = 32mA                                                     | 4.5V           |       |                    |                | 0.55               |      |
| Iı              | A or OE inputs   | V <sub>I</sub> =5.5V or GND                                                | 0)// 5.5)/     | +25°C |                    | ±0.1           | ±1                 | ^    |
| II              | A or OE inputs   | VI-3.3V OF GIND                                                            | 0V to 5.5V     | Full  |                    |                | ±5                 | μΑ   |
|                 | 1                | Vior Vo=5.5V                                                               | 0V             | +25°C |                    | ±0.1           | ±1                 | ^    |
|                 | l <sub>off</sub> | Vior Vo=5.5V                                                               | UV             | Full  |                    |                | ±10                | μΑ   |
|                 | l <sub>OZ</sub>  | z V <sub>O</sub> =0V to 5.5V 3.6V Full                                     |                |       | 10                 | μΑ             |                    |      |
|                 | 1                | V.=5 5V or CND 1.=0                                                        | 1 45)/+0 5 5)/ | +25°C |                    | 0.1            | 1                  | ^    |
|                 | I <sub>CC</sub>  | $V_I$ =5.5V or GND, $I_O$ =0                                               | 1.65V to 5.5V  | Full  |                    |                | 10                 | μΑ   |
|                 | ΔΙςς             | One input at V <sub>CC</sub> -0.6V, Other inputs at V <sub>CC</sub> or GND | 3V to 5.5V     | Full  |                    |                | 500                | μΑ   |

<sup>(1)</sup> All unused inputs of the device must be held at  $V_{CC}$  or GND to ensure proper device operation.

<sup>(2)</sup> Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

<sup>(3)</sup> Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.



## 9.3 Switching Characteristics

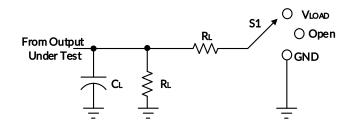
over recommended operating free-air temperature range (-40°C to 125°C, unless otherwise noted.)

| PARAM<br>ETER    | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CON                    | DITIONS                                       | Test<br>Conditions          | MIN <sup>(1)</sup>            | TYP <sup>(2)</sup>                  | MAX <sup>(1)</sup>         | UNIT                                |      |     |      |     |
|------------------|-----------------|----------------|-----------------------------|-----------------------------------------------|-----------------------------|-------------------------------|-------------------------------------|----------------------------|-------------------------------------|------|-----|------|-----|
|                  |                 |                |                             |                                               | V <sub>CC</sub> =1.8V±0.15V | $C_L=30pF,$<br>$R_L=1k\Omega$ | Full                                | 4.4                        | 8.8                                 | 13.1 |     |      |     |
| _                | Α               | Y              | V <sub>CC</sub> =2.5V±0.2V  | $C_L$ =30pF,<br>$R_L$ =500 $\Omega$           | Full                        | 2.7                           | 5.5                                 | 8.1                        |                                     |      |     |      |     |
| t <sub>pd</sub>  | A               | Ť              | V <sub>CC</sub> =3.3V±0.3V  | $C_L$ =50pF,<br>$R_L$ =500 $\Omega$           | Full                        | 2.1                           | 4.2                                 | 6.1                        | ns                                  |      |     |      |     |
|                  |                 |                | V <sub>CC</sub> =5V±0.5 V   | $C_L=50pF$ , $R_L=500\Omega$                  | Full                        | 1.4                           | 3.0                                 | 4.5                        |                                     |      |     |      |     |
|                  | OE              | OF             |                             |                                               |                             |                               | V <sub>CC</sub> =1.8V±0.15V         | $C_L=30pF,$ $R_L=1k\Omega$ | Full                                | 4.7  | 9.7 | 14.5 |     |
| _                |                 |                | V                           | V                                             | V                           | V                             | Y                                   | V <sub>CC</sub> =2.5V±0.2V | $C_L$ =30pF,<br>$R_L$ =500 $\Omega$ | Full | 2.9 | 5.9  | 8.8 |
| t <sub>en</sub>  |                 | JE Y           | V <sub>CC</sub> =3.3V±0.3V  | $C_L$ =50pF,<br>$R_L$ =500 $\Omega$           | Full                        | 2.6                           | 5.2                                 | 7.6                        | ns                                  |      |     |      |     |
|                  |                 |                |                             |                                               |                             | V <sub>CC</sub> =5V±0.5 V     | $C_L$ =50pF,<br>$R_L$ =500 $\Omega$ | Full                       | 1.7                                 | 3.5  | 5.1 |      |     |
|                  |                 |                | V <sub>CC</sub> =1.8V±0.15V | $C_L$ =30pF,<br>$R_L$ =1k $\Omega$            | Full                        | 3.8                           | 7.6                                 | 11.2                       |                                     |      |     |      |     |
| +                | OE              | Y              | V <sub>CC</sub> =2.5V±0.2V  | $C_L$ =30pF,<br>$R_L$ =500 $\Omega$           | Full                        | 2.2                           | 4.5                                 | 6.6                        | nc                                  |      |     |      |     |
| t <sub>dis</sub> | OE              | T              | V <sub>CC</sub> =3.3V±0.3V  | $C_L$ =50pF,<br>$R_L$ =500 $\Omega$           | Full                        | 2.2                           | 4.4                                 | 6.6                        | ns                                  |      |     |      |     |
| (4) TI:          |                 |                | V <sub>CC</sub> =5V±0.5 V   | C <sub>L</sub> =50pF,<br>R <sub>L</sub> =500Ω | Full                        | 1.6                           | 3.2                                 | 4.6                        |                                     |      |     |      |     |

<sup>(1)</sup> This parameter is ensured by design and/or characterization and is not tested in production.

## 9.4 Operating Characteristics

T<sub>A</sub>=25°C


| PARAMETER                   |                   | TEST           | Vcc=1.8V   | Vcc=2.5V | Vcc=3.3V | Vcc=5V | UNIT  |     |
|-----------------------------|-------------------|----------------|------------|----------|----------|--------|-------|-----|
|                             | PARAMEI           | LK             | CONDITIONS | TYP      | TYP      | TYP    | P TYP |     |
| <u> </u>                    | Power Dissipation | Output Enabled | f=10MHz    | 18       | 18       | 19     | 21    | n.E |
| C <sub>pd</sub> Capacitance | Output Disabled   | I-10MHZ        | 2          | 2        | 2        | 4      | pF    |     |

<sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation.

<sup>(2)</sup> Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.



### 10 PARAMETER MEASUREMENT INFORMATION

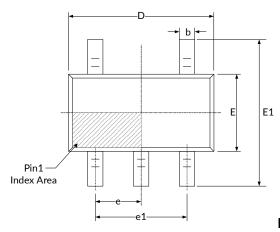


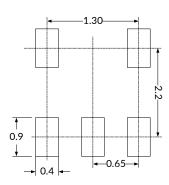
| TEST                               | S1         |
|------------------------------------|------------|
| tplH/tpHL                          | Open       |
| tplz/tpzl                          | $V_{LOAD}$ |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND        |

| V          | INPUTS      |                                | V          | V       | Cı   | R∟   | ν.    |
|------------|-------------|--------------------------------|------------|---------|------|------|-------|
| Vcc        | Vı          | t <sub>r</sub> /t <sub>f</sub> | <b>V</b> м | VLOAD   | CL   | KL   | VΔ    |
| 1.8V±0.15V | <b>V</b> cc | ≤2ns                           | Vcc/2      | 2 x Vcc | 30pF | 1kΩ  | 0.15V |
| 2.5V±0.2V  | <b>V</b> cc | ≤2ns                           | Vcc/2      | 2 x Vcc | 30pF | 500Ω | 0.15V |
| 3.3V±0.3V  | 3V          | ≤2.5ns                         | 1.5V       | 6V      | 50pF | 500Ω | 0.3V  |
| 5V±0.5V    | <b>V</b> cc | ≤2.5ns                         | Vcc/2      | 2 x Vcc | 50pF | 500Ω | 0.3V  |

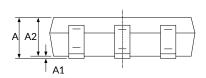


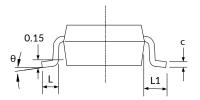
NOTES: A. C<sub>L</sub> includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>0</sub> = 50  $\Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E.  $t_{PLZ}$  and  $t_{PHZ}$  are the same as  $t_{dis}$ .
- F.  $t_{\text{PZL}}$  and  $t_{\text{PZH}}$  are the same as  $t_{\text{en}}$ .
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

10 / 13 www.run-ic.com





# 11 PACKAGE OUTLINE DIMENSIONS SC70-5 (4)



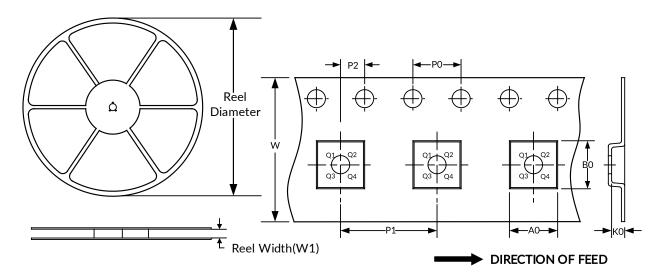


RECOMMENDED LAND PATTERN (Unit: mm)





| Complete         | Dimensions I  | n Millimeters       | Dimensions In Inches      |                         |  |  |
|------------------|---------------|---------------------|---------------------------|-------------------------|--|--|
| Symbol           | Min           | Max                 | Min                       | Max                     |  |  |
| A (1)            | 0.850         | 1.050               | 0.033                     | 0.041                   |  |  |
| A1               | 1 0.000 0.100 |                     | 0.000                     | 0.004                   |  |  |
| A2               | 0.800         | 1.000               | 0.031                     | 0.039<br>0.014<br>0.006 |  |  |
| b                | 0.150         | 0.350               | 0.006                     |                         |  |  |
| С                | 0.080         | 0.150               | 0.003                     |                         |  |  |
| D (1)            | 2.020         | 2.120               | 0.079                     | 0.084                   |  |  |
| E <sup>(1)</sup> | 1.250         | 1.250 1.350         |                           | 0.053                   |  |  |
| E1               | 2.200         | 2.400               | 0.087                     | 0.094                   |  |  |
| е                | 0.650(        | BSC) (2)            | 0.026(BSC) (2)            |                         |  |  |
| e1               | 1.300(        | BSC) (2)            | 0.051(BSC) <sup>(2)</sup> |                         |  |  |
| L                | 0.280         | 0.380               | 0.011                     | 0.015                   |  |  |
| L1               | 0.500(        | REF) <sup>(3)</sup> | 0.020(REF) <sup>(3)</sup> |                         |  |  |
| θ                | 0°            | 8°                  | 0°                        | 8°                      |  |  |


#### NOTE:

- ${\bf 1.\ Plastic\ or\ metal\ protrusions\ of\ 0.15mm\ maximum\ per\ side\ are\ not\ included.}$
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. REF is the abbreviation for Reference.
- 4. This drawing is subject to change without notice.



# 12 TAPE AND REEL INFORMATION REEL DIMENSIONS

### **TAPE DIMENSION**



NOTE: The picture is only for reference. Please make the object as the standard.

### **KEY PARAMETER LIST OF TAPE AND REEL**

| Package Type | Reel<br>Diameter | Reel Width<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|--------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| SC70-5       | 7"               | 9.5                | 2.25       | 2.55       | 1.20       | 4.0        | 4.0        | 2.0        | 8.0       | Q3               |

#### NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.



### **IMPORTANT NOTICE AND DISCLAIMER**

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.