+86-755-23595309

噪声 - 前馈电容器如何提高系统性能

2022-05-12
訪問数:1182
ソース:德州仪器


什么是前馈电容器?

前馈电容器是与
电阻分压器顶部电阻并联的可选电容器,如图1所示。


图 1:使用前馈电容器的低压降稳压器 (LDO)

类似于降噪电容器 (CNR/SS),添加前馈电容器具有多种影响。这些影响包括改善噪声、稳定性、负载响应和电源抑制比 (PSRR)。应用报告“使用前馈电容器和低压降稳压器的优缺点”详细介绍了这些优点。另外,还值得注意的是,前馈电容器仅在使用可调LDO时才可行,因为电阻器网络是外部的。

改善噪声

作为电压调节控制环路的一部分,LDO的误差
放大器使用电阻器网络(R1和R2)来提高基准电压的增益,类似于驱动场效应晶体管栅极的同相放大器电路,以使 (VOUT = VREF × (1 + R1/R2)。这种增加意味着基准的直流电压将按1 + R1/R2系数提高。在误差放大器的带宽内,基准电压的交流元件(例如噪声)也会被放大。

通过在顶部电阻器 (CFF) 上添加电容器,会为特定频率范围引入交流分流器。换句话说,该频率范围中的交流元件会保持在单位增益范围内。请记住,您使用的电容器的阻抗特性将决定这个频率范围。


通过在顶部电阻器上添加一个100nF电容器,您可将噪声从9μVRMS降至4.9μVRMS。

改进稳定性和瞬态响应

添加CFF还会在LDO反馈环路中引入零点 (ZFF) 和极点 (PFF),使用公式1和2计算得出:

ZFF = 1 / (2 × π × R1 × CFF)                (1)
PFF = 1 / (2 × π × R1 // R2 × CFF)                (2)

将零点置于发生单位增益的频率之前可提高相位裕度,如图3所示。


图 3:仅使用前馈补偿的典型LDO的增益/相位图

您可以看到,如果没有ZFF,单位增益会更早出现,大约为200kHz。通过添加零点,单位增益频率在大约300kHz处略微向右推,但相位裕度也有所改善。由于PFF位于单位增益频率的右侧,因此其对相位裕度的影响将是最小的。

在提高LDO的负载瞬态响应后,额外的相位裕度将很明显。通过增加相位裕度,LDO 输出将出现较少的振铃,稳定速度会更快。

改善PSRR

根据零点和极点的位置,您还可以战略性地减少增益滚降。图3显示了零点对从 100kHz开始的增益滚降的影响。通过增加频带的增益,您还将改善该频带的环路响应,从而使特定频率范围的PSRR得到改善。


当然,您必须选择CFF的值以及ZFF和PFF的对应位置,以避免导致不稳定性。您可以通过遵循数据表中规定的CFF限制来避免不稳定性,但我们通常建议选择介于10nF和 100nF之间的值。较大的CFF可能会带来前面提到的优缺点应用报告中概述的其他挑战。

表 1 列出了一些关于CNR和CFF如何影响噪声的经验法则。

表 1:CNR 和CFF的优势与频率间的关系

参数

噪声


低频率

中频率

高频率

(

(1kHz-100kHz)

(>100kHz)

降噪电容器 (CNR)

+++

+

没有影响

前馈电容器 (CFF)

+

+++

+


结语

添加前馈电容器可以改善噪声、稳定性、负载响应和PSRR。当然,您必须仔细选择电容器以保持稳定性。与降噪电容器配合使用时,可以大大提高交流性能。这些只是优化电源时需要牢记的一些工具。